
LA-UR-02-0852 
Approved for public release;  
distribution is unlimited. 

Title: MATLAB-Based VHDL Development Environment 

Author(s): Kimberly K. Katko 
kkatko@lanl.gov, (505) 665-5134 
and 
Scott H. Robinson 
shr@lanl.gov, (505) 665-1954 
 
MS D448, PO Box 1663 
Los Alamos National Laboratory 
Los Alamos, NM 87545 
Fax: (505) 665-4657 

Submitted to: Engineering of Reconfigurable Systems and Algorithms 
June 24-27, 2002, Las Vegas, Nevada, USA 

Los Alamos National Laboratory, an affirmati
Energy under contract W-7405-ENG-36. By
free license to publish or reproduce the publ
National Laboratory requests that the publis

ve action/equal opportunity employer, is operated by the University of California for the U.S. Department of  
 acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty- 

hed form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos 
her identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos 

National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse 
the  
viewpoint of a publication or guarantee its technical correctness. 

FORM 836 (10/96) 

 

is 

mailto:kkatko@lanl.gov
mailto:shr@lanl.gov


MATLAB-Based VHDL Development Environment 
Kimberly K. Katko 
MS D448, P.O. Box 1663 
Los Alamos National Laboratory 
Los Alamos, NM 87545 

Scott H. Robinson 
MS D448, P.O. Box 1663 
Los Alamos National Laboratory 
Los Alamos, NM 87545

Abstract 
The Reconfigurable Computing program at Los 
Alamos National Laboratory (LANL) required 
synthesizable VHDL Fast Fourier Transform (FFT) 
designs that could be quickly implemented into FPGA-
based high speed Digital Signal Processing 
architectures.  Several different FFTs were needed for 
the different systems.  As a result, the MATLAB-Based 
VHDL Development Environment was developed so 
that with a small amount of work and forethought, 
arbitrarily sized FFTs with different bit-width 
parameters could be produced quickly from one 
VHDL generating algorithm.  The result is highly 
readable VHDL that can be modified quickly via the 
generating function to adapt to new algorithmic 
requirements.  Several additional capabilities are 
integrated into the development environment.  These 
capabilities include a bit-true parameterized 
mathematical model, fixed-point design validation, 
test vector generation, VHDL design verification, and 
chip resource use estimation.   

1 Introduction 
LANL needed the flexibility to build a wide 

variety of FFTs with a quick turn around time.  It 
was important to have an effective way of trading 
off size, speed and precision.  The FFTs also 
needed to be efficiently implemented into our 
existing FPGA-based architecture.  
Reconfigurable computing systems at LANL 
have been designed to accept two or four inputs 
on each clock.  This allows the data processing 
rate to be reduced to a more manageable speed.  
This approach, however, limits us from using 
existing FFT cores.   

A MATLAB-Based VHDL Development 
Environment (MBVDE) was created in response 
to our FFT needs.  MBVDE provides more 
flexibility than is available with VHDL.  The 
technique allows new designs to be implemented 
and verified quickly.  In addition, analysis tools 
are incorporated to evaluate trade-offs. 

MBVDE incorporates the performance of 
VHDL, the fast design time of core generation, 

and the benefit of not having to know VHDL 
available with C-tools into one environment.  The 
MBVDE approach is not a comprehensive 
solution, but is a powerful method for algorithms 
that involve the cascading of fundamental 
building blocks.  

2 VHDL Development Environment 
Comparisons 

There are advantages and disadvantages of 
the different development tools.  The trade-offs 
include development time required, flexibility of 
design, control over design details and overall 
performance, code readability and visibility, and 
the need to know VHDL.  These trade-offs are 
considered as a function of different tools in this 
section.  Tools contrasted include cores, high-
level tools, hand coded VHDL, and LANL’s 
MBVDE.  Commercially or publicly available IP 
cores and vendor supplied cores or core 
generators will be grouped into one category and 
referred to as cores.  High-level tools such as C-
to-VHDL and C-to-EDIF tools will also be 
grouped into one category and referred to as 
high-level tools. 

2.1 Development Time 
One of the most important considerations 

when porting an algorithm to an FPGA is 
development time.  Of the three standard 
methods, development time using cores is the 
fastest.  Using high-level tool takes significantly 
longer, while digital design using VHDL takes 
longer still.  For our design method, the initial 
development of an algorithm for automated 
VHDL generation will take slightly longer than 
that of standard hand coding of VHDL.  Once 
this groundwork is laid, the generation of new 
VHDL with the MBVDE can be done with 
speeds comparable to those using core generation 
programs. 



2.2 Flexibility 
Another important aspect of any design 

method is the inherent flexibility afforded to the 
designer.   In this area, cores can be particularly 
poor, as the options are severely limited.  This 
lack of flexibility limits the applications for 
which this core can be used.  High-level tools and 
hand coding provide more flexibility, but only 
within the individual application being written.  
If one decided to change the length of an FFT, 
for example, new code and new parameters must 
be provided.  With MBVDE, an unlimited 
number of input parameters can be built into the 
design.  The result is tremendous flexibility 
within the chosen algorithm, where the designer 
can effectively decide how much of the problem 
should be constrained.  The downside is that not 
all functions are good candidates for this type of 
design.  The types of designs that are best suited 
to the MBVDE are ones based on algorithms that 
have regularly repeating (cascaded) structures.  
FFTs, lattice filters, recursions such as 
Levinson’s and filter implementations such as 
polyphase structures and Hogenauer decimators 
are all examples of algorithms where cascaded 
versions of a fundamental base algorithm 
combine to form a more complex structure [1], 
[2], [3]. 

2.3 Design Control and Performance 
Control over design details and subsequent 

design performance are always important.  The 
highest performance designs will come from 
cores.  When designing with high-level tools, 
details of the design are difficult to control.  
Unlike with cores, this lack of control is not a 
feature that aids in performance.  Rather, 
tweaking the design to gain added performance is 
very difficult.  When designing with VHDL, 
whether for a single hand-coded piece of code or 
for MBVDE, control over design details is 
straightforward. 

2.4 Code Visibility and Readability 
The cost of the high performance attained 

with a core is the lack of knowledge of design 
details.  Visibility into the design provides the 
knowledge that is required to develop bit-true 
mathematical models and subsequent system 
verification tests.  When the core is used in 

relative isolation this is not a big problem, 
because cores are generally tested thoroughly 
before they are released to the public.  Lack of a 
bit-true model of the core does become a 
problem, however, when the core needs to be 
tightly integrated into a larger system.  Designs 
formed using high-level tools often have similar 
limitations.  Knowledge of the inner workings of 
the design is limited.  In addition, these tools 
generally produce VHDL code that is difficult to 
follow and understand, even for experienced 
programmers.  Code produced by tools that skip 
the VHDL step and go straight to producing 
EDIFs can be even more difficult to understand.  
This lack of code visibility contributes to a poor 
debugging environment and in extreme situations 
makes debugging impossible in the standard 
sense.  VHDL, whether hand coded or produced 
as output from MBVDE, is straightforward to 
follow and understand assuming the code is 
clearly written and appropriately documented.  
This readability can be invaluable during the 
debugging process.  Knowledge of the internal 
design details is also complete and it is therefore 
possible to build bit-true mathematical models to 
aid in the testing and debugging phases. 

2.5 Knowledge of VHDL 
When VHDL resources are limited, the need 

for the designer to have advanced VHDL coding 
skills also becomes an issue.  There is no need to 
know VHDL to implement cores targeted for 
isolated modules.  Some basic VHDL knowledge 
is required to integrate them with additional 
designs, however.  While VHDL knowledge is 
not required to design with high-level tools, 
producing high-performance designs without it is 
difficult.  Of course designing hand-coded 
VHDL or MBVDE generators requires 
knowledge of the language.  The use of existing 
MBVDE generators, however, does not. 

3 MBVDE Fundamentals 
As discussed above, the LANL 

Reconfigurable Computing program required 
FFTs of varying size and precision for multiple 
projects.  The desired FFTs needed to handle at 
least 100 Msamples/sec taking either 2 or 4 
inputs per clock.  Due to certain environmental 
requirements on memory usage, they could not 



make use of select RAM.  Trade offs between 
chip resources and numerical precision were 
critical to the designs.  The initial algorithmic 
delivery required a 32-point FFT, but future 
applications had the potential to utilize sizes 
from 16 up to 1024 points.  No existing FFT 
cores met these design constraints.  Hand coding 
VHDL was the initial approach, but doing so for 
larger FFTs became increasingly tedious and 
accident-prone.  At this point, the decision was 
made to leverage our knowledge of the basic 
repeating structures that make up an FFT to add 
some automation to the development process 
where appropriate.  The MBVDE was developed 
in response to the above needs. 

Automatic VHDL generation for specific 
applications has been done on several programs 
in the past [4], [5], [6], [7].  The unique feature 
of MBVDE is the additional capabilities that are 
built into the development environment.  The 
capabilities include a bit-true parameterized 
mathematical model, fixed-point design 
validation, test vector generation, generation of 
synthesizable VHDL, VHDL design verification, 
and chip resource use estimation.  The features, 
development and benefits of the LANL MBVDE 
FFT are discussed in the remainder of this 
section, using the FFT algorithm as a concrete 
example. 

3.1 MATLAB as Development 
Environment 

MATLAB was chosen as the development 
platform for several reasons.  First, it is a widely 
used program that runs on many platforms.  
MATLAB is a natural fit for signal processing 
applications due to the built-in functions and 
available signal processing toolboxes and data 
visualization capabilities.  The built-in FFT 
function made design verification very clear-cut.  
The fact that MATLAB is an interpreted 
language makes data manipulation and analysis 
quick and easy.  A final reason for choosing 
MATLAB was that it provided an analysis 
environment for the easy creation of test vectors 
and the comparison of results.   

3.2 Algorithmic Considerations 
As previously described, this is not a 

comprehensive method applicable to every 

design situation.  It is a powerful tool when 
cascading and placing smaller, fundamental 
building blocks creates the desired algorithm.  
Thus, before implementing an algorithm using 
the MBVDE, the desired algorithm itself must be 
analyzed for fitness to this technique and the 
component building blocks need to be identified. 

3.2.1 Base design 
For any cascaded or recursive style 

algorithm, a fundamental base algorithm is 
needed to eventually form the overall complex 
design.  To enable this type of situation, LANL 
started with a hardware-verified, non-
parameterized 32-point FFT.  This base design 
implements a Decimation-In-Frequency Fast 
Fourier Transform (DIF-FFT) algorithm utilizing 
a heavily pipelined architecture to maximize data 
throughput.  Inputs to the design are two real data 
samples. Output is one complex sample per clock 
cycle.  The pipelined architecture allows data to 
enter and results to exit the logic on every clock 
cycle.   

The DIF-FFT is built around a cascade of 
standard radix-2 butterfly computation modules 
[1]. This radix-2 module is the fundamental base 
algorithm for this particular design.  Inputs to the 
radix are two complex data values and one 
complex twiddle value.  The output is two 
complex result values.  Each radix performs four 
complex additions, two complex multiplies and 
one complex vector multiply to correctly scale 
the output. The pipeline architecture of the radix 
allows new data to enter on each clock cycle and 
has a three-clock latency.   

3.2.2 Identifying repeating structures 
As stated previously, the primary use of this 

technique is for creating complex algorithms 
from smaller, fundamental building blocks.  
While the radix-2 is the primary building block, 
others are required to build a working larger FFT.  
The basic structures that make up an N-point FFT 
are shown below in Figure 1.  For the current 
application, two points arrive at the input of the 
FFT on each clock cycle.  The points arrive in 
natural order and need to be reordered (a bit 
reversing operation) before going into the first 
pass radix-2 components.  Therefore, all N points 
must arrive before the input data reordering can 
begin.  Once all points have arrived and the 



reordering is complete, the data can be run 
through the first pass radix-2 components.  
Explicitly instantiating each of the radix-2 
components allows the rest of the design to flow 
smoothly.  All N/2 first pass radix-2 operations 
are completed simultaneously.  The first pass 
radix-2 outputs then go through another round of 
reordering before being input to the second pass 
radix-2s.  This procedure is followed for the 
remainder of the passes. 

 
Figure 1 

Figure 2 
 
A space saving improvement can be made at 

this point, however.  By instantiating just one 
radix-2 component per pass, the data for that pass 
can be run through the radix-2 sequentially, one 
pair of points at a time.  Instantiating a single 
radix-2 component per pass requires some 
additional data management, but saves significant 

chip space, specifically in look up tables (LUTs).  
Holding the data points before feeding sequential 
pairs to the radix-2 requires the addition of a 
delay component.  Following the radix-2 
operation, the data points need to be held until 
enough are present to do the data reordering for 
that pass.  This process of holding, reordering, 
delaying and running through the radix-2 is 
repeated for each pass.  This new structure is 
shown in Figure 2.  The structure of the FFT has 
now been broken down into its basic elements. 

3.3 MATLAB Model Development Process 
Once the mathematical algorithm has been 

analyzed on paper and broken down into the 
appropriate building blocks and a fundamental 
base algorithm, the process moves into the 
MATLAB environment so that models can be 
created and designs verified.  It is in this stage 
that fixed-point models are created and the 
overall design correctness is verified by 
comparing to desired results with carefully 
chosen test vectors.  

3.3.1 Identifying algorithm input 
parameters 

Since the goal of this environment was to 
create FFT designs meant to accommodate 
several different algorithmic applications, the 
next step was to identify necessary input 
parameters so that all desired combinations were 
covered.  The parameter choices for the varying 
FFT sizes were clear at this stage in the design:  
FFT size, input data bit-width, bit-widths of data 
after each radix-2 pass (internal scaling strategy), 
and twiddle factor bit-width were all important 
variables to allow use of the resulting FFTs in the 
different situations described previously.  
Writing code so that these parameters were 
inputs into the VHDL generator was of 
paramount importance for LANL’s particular 
situation. 

3.3.2 Floating-point cascades 
The first step after identifying a base 

algorithm is to implement these building blocks 
in floating-point MATLAB to verify that the 
desired results are achieved.  Writing a simple 
MATLAB module to mimic the radix-2 step and 
writing a MATLAB function to generate the 



twiddle factors needed between cascaded stages 
to implement larger FFTs was the starting point 
for this example.  Once these two modules were 
written, N-point FFTs were created through 
combinations of these building blocks and the 
resulting outputs were compared with the built-in 
MATLAB FFT function to verify that the desired 
result was obtained. 

3.3.3 Fixed-point cascades 
To migrate towards a VHDL design, a fixed-

point version of the radix-2 function was then 
written in MATLAB.  This fixed-point module 
has input parameters that control the desired 
input and output data bit-widths.  The precision 
of the twiddle factors used in an individual radix-
2 operation is also an input parameter.  The data 
is allowed to grow to maximum possible bit-
width throughout the radix-2 module.  The 
outputs are truncated prior to being output from 
the function.  The fixed-point design internal to 
the radix-2 module is designed such that 
overflow and underflow are impossible. 

The next stage in the development cycle was 
to create arbitrarily sized FFTs based on the 
fixed-point radix-2 algorithm and the fixed-point 
twiddle generation module.  These fixed-point 
FFTs built on cascades of fixed-point radix-2 
functions were then compared with the floating-
point cascades described above and the built-in 
MATLAB FFT function to verify that correct 
performance was being achieved.  

3.3.4 Bit-true, parameterized 
mathematical model 

Once the basic FFT structures were broken 
down, a bit-true model for the entire 
parameterized design was developed.  Our 
previously gained knowledge of building FFTs of 
different sizes was now applied to building a 
model for an arbitrary-point FFT.  Routines were 
developed in MATLAB to calculate the data 
swapping between each pass as well as the data 
reordering (bit-reversing) before the first pass.  
The arbitrary-point model calculates the FFT by 
looping log2(N) times for an N-point FFT.  Each 
pass through the loop involves data reordering 
and a radix-2 operation.  All data points are run 
through the radix-2 module, 2 points at a time.  

The loop portion of the N-point FFT function is 
shown below in Figure 3.  The model was 
verified by setting the precision to full scale, 
scaling the output of the model and then 
comparing the results to those from the 
MATLAB built-in FFT. 

 
Figure 3 

3.4 Writing VHDL and VHDL Generators 
The next step of the process is to build the 

VHDL generators.  There are four basic steps to 
building a VHDL generator.  The steps are 
repeated for each function in the design as well 
as for the top-level design.  First, the function is 
written in VHDL for a specific set of parameters.  
A 16-point FFT was chosen for this step.  The 
finished code should be tested against the bit-true 
mathematical model of the function.  Once the 
code has been verified, the VHDL generator can 
be written.  The VHDL is generated from 
MATLAB with the use of fprintf statements 
embedded in loops to write text to a .vhd file.  
The generator is then used to produce VHDL 
modules for several different parameter 
combinations.  Finally, the modules are inspected 
by hand and tested against the bit-true 
mathematical models.   

 A portion of the MATLAB code used to 
generate the twiddle factors in the top-level FFT 
function is shown below in figure 4.  A snippet of 
VHDL code that was generated from this 
function is shown in figure 5. 

 



Figure 4 

 
Figure 5 

 
The radix-2 routine (both MATLAB and 

VHDL) has parameterization built into the 
design.  As a result, this code never changes 
based on any of the input parameters.  For this 
reason, a VHDL generation routine was not 
designed for this function. 

Once the procedure detailed above has been 
completed for all functions, a test bench for the 
full system is written in VHDL and used to test 
the generated code for several parameter 
combinations.  A make file also needs to be 

written.  Code generators for 
the test bench and the make 
file can then be developed as 
well. 

Generating the code 
from MATLAB saved a 
significant amount of time 
that would have otherwise 
had to be spent copying, 
pasting and editing.  
Additionally, the automatic 
code generation cut down on 
potential typing errors.  
Furthermore, modifications 
to the code can be made in 
one place in the MATLAB 
generation code rather than 
in many points in the VHDL.  
This is a very useful feature 
when tweaking the code for 
increased performance.  

3.5 Additional Utilities 
Automatic VHDL 

generators become very powerful when coupled 
with additional utilities.  Several utilities were 
built to complement the FFT generation program.  
First, a MATLAB function was built to verify 
designs as well as generate the code.  This 
function generates the VHDL specified by the 
input parameters, creates a file of input vectors, 
allows time for Modelsim to run the VHDL code, 
runs the same data through the MATLAB bit-true 
model and compares the VHDL and MATLAB 
outputs for rapid design verification.   

Another utility was written to validate the 
performance of the fixed-point design selected by 
the FFT generator input parameters.  The 
validation is done by running synthetic data 
through the MATLAB built-in FFT (full-
precision, floating-point) and the bit-true model 
and analyzing the differences.  This tool can be 
used to determine a set of bit-width that yield 
minimum acceptable performance and the point 
of diminishing returns.  A minimum of one bit of 
growth per pass generally yields respectable 
results for this algorithm.  Finally, a function was 
built to estimate the number of register bits that 
will be used to implement the design on an 
FPGA.  The result is expressed both as bits and 
as a percentage of register bits available in a 



Virtex 1000 chip.  These two functions can be 
used together to examine the trade-off between 
design precision and chip resources use very 
efficiently. 

3.6 Final Design Performance in Hardware 
Several FFT designs were run through 

Synplicity and Xilinx Place and Route to get size 
and space estimates for the Virtex 1000 chip.  
Sizes up to 128 points can be implemented and 
run at speeds over 50 MHz.  Several designs have 
been successfully verified in hardware.  Each 
design tested has been verified on the first 
attempt, and therefore has not needed debugging.  
An important strength of this and other MBDVE 
designs is that they are easily partitioned across 
several chips because they are built from 
cascaded structures. 

4 Conclusion  
The MATLAB-based VHDL Design 

Environment can be a powerful tool for VHDL 
development for many common algorithmic 
situations.  The techniques described in this 
paper allow the production of highly readable, 
highly parameterized code that will allow the 
quick deployment of a common algorithm into 
many different application environments.  As 
described through the example of the FFT, the 
MBVDE provides an environment where a 
modicum of up front work makes the generation 
of application specific code much easier later in 
the development process.  Thus, the resulting 
code is more portable to varying applications, 
allowing custom implementations without 
redesigning the VHDL for every single 
algorithmic situation.  

A side benefit of using MBVDE is that it 
imposes rigor in the development process.  It is 
natural to take the time to tie up loose ends and 
spend time documenting when it is clear that the 
code will be reused in the future.  This makes the 
hand off to other developers much easier.  In 
addition, the algorithm being broken down into 
its basic structures makes visualization and 
partitioning across chips much easier. 

The power of MBVDE resides in the 
additional utilities that are built into the 
environment.  These utilities include a bit-true 
parameterized mathematical model, fixed-point 

design validation, test vector generation, 
generation of synthesizable VHDL, VHDL 
design verification, and chip resource use 
estimation.   
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